34 research outputs found

    CT-based lung motion differences in patients with usual interstitial pneumonia and nonspecific interstitial pneumonia

    Get PDF
    We applied quantitative CT image matching to assess the degree of motion in the idiopathic ILD such as usual interstitial pneumonia (UIP) and nonspecific interstitial pneumonia (NSIP). Twenty-one normal subjects and 42 idiopathic ILD (31 UIP and 11 NSIP) patients were retrospectively included. Inspiratory and expiratory CT images, reviewed by two experienced radiologists, were used to compute displacement vectors at local lung regions matched by image registration. Normalized three-dimensional and two-dimensional (dorsal-basal) displacements were computed at a sub-acinar scale. Displacements, volume changes, and tissue fractions in the whole lung and the lobes were compared between normal, UIP, and NSIP subjects. The dorsal-basal displacement in lower lobes was smaller in UIP patients than in NSIP or normal subjects (p = 0.03, p = 0.04). UIP and NSIP were not differentiated by volume changes in the whole lung or upper and lower lobes (p = 0.53, p = 0.12, p = 0.97), whereas the lower lobe air volume change was smaller in both UIP and NSIP than normal subjects (p = 0.02, p = 0.001). Regional expiratory tissue fractions and displacements showed positive correlations in normal and UIP subjects but not in NSIP subjects. In summary, lung motionography quantified by image registration-based lower lobe dorsal-basal displacement may be used to assess the degree of motion, reflecting limited motion due to fibrosis in the ILD such as UIP and NSIP

    Quantitative CT-based image registration metrics provide different ventilation and lung motion patterns in prone and supine positions in healthy subjects

    Get PDF
    Background Previous studies suggested that the prone position (PP) improves oxygenation and reduces mortality among patients with acute respiratory distress syndrome (ARDS). However, the mechanism of this clinical benefit of PP is not completely understood. The aim of the present study was to quantitatively compare regional characteristics of lung functions in the PP with those in the supine position (SP) using inspiratory and expiratory computed tomography (CT) scans. Methods Ninety subjects with normal pulmonary function and inspiration and expiration CT images were included in the study. Thirty-four subjects were scanned in PP, and 56 subjects were scanned in SP. Non-rigid image registration-based inspiratory-expiratory image matching assessment was used for regional lung function analysis. Tissue fractions (TF) were computed based on the CT density and compared on a lobar basis. Three registration-derived functional variables, relative regional air volume change (RRAVC), volumetric expansion ratio (J), and three-dimensional relative regional displacement (s*) were used to evaluate regional ventilation and deformation characteristics. Results J was greater in PP than in SP in the right middle lobe (P = 0 .025), and RRAVC was increased in the upper and right middle lobes (P < 0.001). The ratio of the TF on inspiratory and expiratory scans, J, and RRAVC at the upper lobes to those at the middle and lower lobes and that ratio at the upper and middle lobes to those at the lower lobes of were all near unity in PP, and significantly higher than those in SP (0.98–1.06 vs 0.61–0.94, P < 0.001). Conclusion We visually and quantitatively observed that PP not only induced more uniform contributions of regional lung ventilation along the ventral-dorsal axis but also minimized the lobar differences of lung functions in comparison with SP. This may help in the clinicians search for an understanding of the benefits of the application of PP to the patients with ARDS or other gravitationally dependent pathologic lung diseases. Trial registration Retrospectively registered.This research was supported by a Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1A09082160) and Korea Environment Industry & Technology Institute (KEITI) through Environmental Health Action Program, funded by Korea Ministry of Environment (MOE) (2018001360001)

    Quantitative CT-based structural alterations of segmental airways in cement dust-exposed subjects

    Get PDF
    Background Dust exposure has been reported as a risk factor of pulmonary disease, leading to alterations of segmental airways and parenchymal lungs. This study aims to investigate alterations of quantitative computed tomography (QCT)-based airway structural and functional metrics due to cement-dust exposure. Methods To reduce confounding factors, subjects with normal spirometry without fibrosis, asthma and pneumonia histories were only selected, and a propensity score matching was applied to match age, sex, height, smoking status, and pack-years. Thus, from a larger data set (N = 609), only 41 cement dust-exposed subjects were compared with 164 non-cement dust-exposed subjects. QCT imaging metrics of airway hydraulic diameter (Dh), wall thickness (WT), and bifurcation angle (θ) were extracted at total lung capacity (TLC) and functional residual capacity (FRC), along with their deformation ratios between TLC and FRC. Results In TLC scan, dust-exposed subjects showed a decrease of Dh (airway narrowing) especially at lower-lobes (p < 0.05), an increase of WT (wall thickening) at all segmental airways (p < 0.05), and an alteration of θ at most of the central airways (p < 0.001) compared with non-dust-exposed subjects. Furthermore, dust-exposed subjects had smaller deformation ratios of WT at the segmental airways (p < 0.05) and θ at the right main bronchi and left main bronchi (p < 0.01), indicating airway stiffness. Conclusions Dust-exposed subjects with normal spirometry demonstrated airway narrowing at lower-lobes, wall thickening at all segmental airways, a different bifurcation angle at central airways, and a loss of airway wall elasticity at lower-lobes. The airway structural alterations may indicate different airway pathophysiology due to cement dusts.This study was supported by the Korea Ministry of Environment (MOE) as The Environmental Health Action Program [RE201806039, and RE201806027], Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education [NRF2017R1D1A1B03034157]

    Is Angiosome-Targeted Angioplasty Effective for Limb Salvage and Wound Healing in Diabetic Foot? : A Meta-Analysis

    No full text
    <div><p>Purpose</p><p>Given that the efficacy of employing angiosome-targeted angioplasty in the treatment of diabetic foot remains controversial, this study was conducted to examine its efficacy.</p><p>Methods</p><p>We performed a systematic literature review and meta-analysis using core databases, extracting the treatment modality of angiosome-targeted angioplasty as the predictor variable, and limb salvage, wound healing, and revision rate as the outcome variables. We used the Newcastle-Ottawa Scale to assess the study quality, along with the Cochrane Risk of Bias Tool. We evaluated publication bias using a funnel plot.</p><p>Results</p><p>The search strategy identified 518 publications. After screening these, we selected four articles for review. The meta-analysis revealed that overall limb salvage and wound healing rates were significantly higher (Odds ratio = 2.209, 3.290, p = 0.001, p<0.001) in patients who received angiosome-targeted angioplasty than in those who received nonangiosome-targeted angioplasty. The revision rate between the angiosome and nonangiosome groups was not significantly different (Odds ratio = 0.747, p = 0.314).</p><p>Conclusion</p><p>Although a further randomized controlled trial is required for confirmation, angiosome-targeted angioplasty in diabetic foot was more effective than nonangiosome-targeted angioplasty with respect to wound healing and limb salvage.</p></div

    Flow diagram for identification of relevant studies.

    No full text
    <p>Flow diagram for identification of relevant studies.</p

    Forest plot of limb salvage rate of angiosome- and non-angiosome-targeted angioplasty.

    No full text
    <p>Heterogeneity: <i>χ</i><sup>2</sup> = 5.082, df = 3 (P = 0.166); I<sup>2</sup> = 40.964%.</p> <p>Test for overall effect: Z = 3.267 (P = 0.001).</p

    Funnel plot for publication bias in limb salvage rate.

    No full text
    <p>Funnel plot for publication bias in limb salvage rate.</p

    Clinical data of included studies.

    No full text
    <p>Clinical data of included studies.</p

    Funnel plot for publication bias in wound healing rate.

    No full text
    <p>Funnel plot for publication bias in wound healing rate.</p

    Quantitative Assessment of Airway Changes in Fibrotic Interstitial Lung Abnormality Patients by Chest CT According to Cumulative Cigarette Smoking

    No full text
    Purpose: The aim of this study was to evaluate the role of Pi10 in patients with fibrotic interstitial lung abnormality (fibrotic ILA) in a chest CT, according to cumulative cigarette smoking. Methods: We retrospectively assessed 54 fibrotic ILA patients and 18 healthy non-smokers (control) who underwent non-enhanced CT and pulmonary function tests. We quantitatively analyzed airway changes (the inner luminal area, airway inner parameter, airway wall thickness, Pi10, skewness, and kurtosis) in the chest CT of fibrotic ILA patients, and the fibrotic ILA patients were categorized into groups based on pack-years: light, moderate, heavy. Airway change data and pulmonary function tests among the three groups of fibrotic ILA patients were compared with those of the control group by one-way ANOVA. Results: Mean skewness (2.58 ± 0.36) and kurtosis (7.64 ± 2.36) in the control group were significantly different from those of the fibrotic ILA patients (1.89 ± 0.37 and 3.62 ± 1.70, respectively, p p = 0.013), increased airway wall thickness of the segmental bronchi (mean increase 0.06 mm, p = 0.005), and decreased lung diffusing capacity for carbon monoxide (p = 0.023). Conclusion: Pi10, as a biomaker of quantitative CT in fibrotic ILA patients, can reveal that smoking affects airway remodeling
    corecore